A Generative Model for Automatic Detection of Resolving Multiple Sclerosis Lesions
نویسندگان
چکیده
The appearance of new Multiple Sclerosis (MS) lesions on MRI is usually followed by subsequent partial resolution, where portions of the newly formed lesion return to isointensity. This resolution is thought to be due mostly to reabsorption of edema, but may also reflect other reparatory processes such as remyelination. Automatic identification of resolving portions of new lesions can provide a marker of repair, allow for automated analysis of MS lesion dynamics, and, when coupled with a method for detection of new MS lesions, provide a tool for precisely measuring lesion change in serial MRI. We present a method for automatic detection of resolving MS lesion voxels in serial MRI using a Bayesian framework that incorporates models for MRI intensities, MRI intensity differences across scans, lesion size, relative position of voxels within a lesion, and time since lesion onset. We couple our method with an existing method for automatic detection of new MS lesions to provide an automated framework for measuring lesion change across serial scans of the same subject. We validate our framework by comparing to lesion volume change measurements derived from expert semi-manual lesion segmentations on clinical trial data consisting of 292 scans from 73 (54 treated, 19 untreated) subjects. Our automated framework shows a) a large improvement in segmentation consistency over time and b) an increased effect size as calculated from measured change in lesion volume for treated and untreated subjects.
منابع مشابه
Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملThe Optimization of Magnetic Resonance Imaging Pulse Sequences in Order to Better Detection of Multiple Sclerosis Plaques
Background and objective: Magnetic resonance imaging (MRI) is the most sensitive technique to detect multiple sclerosis (MS) plaques in central nervous system. In some cases, the patients who were suspected to MS, Whereas MRI images are normal, but whether patients don’t have MS plaques or MRI images are not enough optimized enough in order to show MS plaques? The aim of the current study is ...
متن کاملEvaluation the FLAIR Sensitivity and DWI Post-inject in Comparison with Delayed Enhancement T1w for Better Detection of Active MS Lesions
Background: Multiple sclerosis (MS) is a chronic, typically progressive and most common autoimmune disease which damaged the central nervous system. According to the reports in 2008, this disorder has affected 2 and 2.5 million people globally. While the reason is not clear, proposed causes for this include immunologic, environmental, infectious and genetic factors, and sexuality. MS can cause ...
متن کامل